Unit Testing

Why and How to Write Unit Tests in KDE?
David Faure
faure@kde.org

Kévin Ottens
ervin@kde.org

aKademy 2007, Glasgow




What is a Unit Test?

"Unit testing Is a procedure used to validate
that individual units of source code are
working properly" (Wikipedia)

A written contract that a given piece of code
must satisfy

In practice: steps and conditions

In a document
as code

aKademy 2007, Glasgow n




TDD: What?

Test Driven Development

"Software development technique that
Involves repeatedly first writing a test case
and then implementing only the code
necessary to pass the test" (Wikipedia)

aKademy 2007, Glasgow “




TDD: Why?

Get Immediate feedback
Improve the design and code:
Close to Design by Contract
Modularized code
Easier refactoring
Reduced need for a debugger
Better trust in the code overall
Improved test coverage
Less defects

aKademy 2007, Glasgow “




TDD: How?

Add a test

Run all tests and see the new one fall
Write some code

Run the automated tests and see them
succeed, otherwise goto 3

Code cleanup, test should still pass
goto 1

In short: Rock climbing progression, each
test is a carabiner

aKademy 2007, Glasgow “




Automated tests

Code which tests code
As to be fast to be worthwile
Green bar approach (PASS/FAIL)
More advanced technics

Data driven tests

Mock objects

aKademy 2007, Glasgow n




Unit tests & KDE

Why?
Benefits for your design and code
Long term
Run them regularly on the EBN
Compute test coverage
How?
Build them
Run them before commit and after
update!
mplementation details following

aKademy 2007, Glasgow “




QTestLib

Part of Qt

GPL (+commercial)

One testcase -> one executable

Uses slot introspection to run test methods

QCOMPARE(a, b)
QVERIFY (bool)
QVERIFY2(bool, "some bug happened")

aKademy 2007, Glasgow n




QTestLib example

class KLocaleTest : public QObject
{
Q OBJECT

private Q SLOTS:

aKademy 2007, Glasgow




QTestLib example

void KLocaleTest::readTime()
KLocale* locale = KGlobal::locale();
bool ok = false;
QCOMPARE(locale->readTime("11:22:33", &ok),

QVERIFY(ok);

aKademy 2007, Glasgow




CMake file

klocaletest SOURCES
kde4 automoc klocaletest SOURCES
kde4 add unit_test(klocaletest ${klocaletest SOURCES})
target link libraries(klocaletest ${KDE4 KDECORE_LIBS}

klocalizedstringtest

aKademy 2007, Glasgow




QTestLib output

GREEN!

aKademy 2007, Glasgow




QTestLib output

Config: Using QTest library 4.3.0, Qt 4.3.0
PASS : KLocaleTest::initTestCase()

: KLocaleTest::readTime() Compared values are not the same
Actual (locale->readTime("11:22:33", &ok)): 11:22:33.000
Expected (QTime(11,22,34)): 11:22:34.000
Loc: [/d/kde/src/4/kdetoys/tests/klocaletest.cpp(13)]

PASS : KLocaleTest::cleanupTestCase()
Totals: 2 passed, 1 failed, O skipped
RrkrRR* Finished testing of KLocaleTest *kxkkickx

aKademy 2007, Glasgow




Regression testing

Test project /d/kde/build/4/kdelibs/kdecore/tests
1/ 36 Testing klocaletest Passed
2/ 36 Testing klocalizedstringtest Passed

aKademy 2007, Glasgow




| Testing app code

fooparsertest SOURCES

aKademy 2007, Glasgow




| More information

aKademy 2007, Glasgow




We're counting on you

aKademy 2007, Glasgow




	Title
	What is a Unit Test?
	TDD: What?
	TDD: Why?
	TDD: How?
	Automated tests
	Unit tests & KDE
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	More information
	Slide 17

